Course Contents

Course Contents:	•	Computer representation of numbers
		• Binary numbers, floating point format
		• Finite precision, round-off, machine epsilon
		• Error propagation and catastrophic cancellation
	•	Basic numerical analysis.
		 Taylor series as asymptotic expansions.
		• Asymptotic error expansions, error analysis and order of
		accuracy.
		 Extrapolation and interpolation techniques
		• Methods for integration on a uniform mesh: rectangle
		rule, trapezoid rule, midpoint rule, Simpson's rule.
		• Convergence study as a correctness check.
		Numerical Linear Algebra.
		• Review of linear algebra, vector and matrix norms.
		• Condition number of a system of linear equations,
		condition number of a matrix.
		• Improving condition number: scaling and balancing
		• The LU factorization and its use for systems of linear
		equations.
		• Computing the factors by Gauss eminiation.
		• The Choleski factorization
		• Band matrices
		Time stepping methods for dynamical systems (ODE's)
		Partial differential equation
		• Elliptic equation
		• Parabolic equation
		• Hyperbolic equation
		Nonlinear equations and optimization, Newton's method.
	•	Principles of numerical software, performance and reliability
		• Software tools: debuggers, memory leaks, performance
		tools.
		• Understanding the hardware: prefetch, pipelining, cache.
		• Coding for performance.
		 Using open-source modeling software.